Acetaldehyde Aldol Condensation Kinetics

J. B. ANDERSON¹ and M. S. PETERS University of Illinois, Urbana, Ill.

ACETALDEHYDE may react to form aldol whenever acetaldehyde and hydroxide ions are present. While direct applications of this reaction are few, it provides one method of making carbon-to-carbon bonds; and the reaction can and does occur as an undesirable side reaction in many processes. A complete knowledge of the kinetics and mechanisms of this reaction may aid in the study of similar condensation reactions such as the formation of pentaerythrose.

The mechanism of the acetaldehyde aldol reaction has been the object of several studies (1, 4, 8). However, the results have been indefinite. This work was undertaken to establish the kinetics and mechanism of the reaction.

THEORY

A mechanism for the reaction, originally proposed by Hann and Lapworth (6) is generally accepted today. It is supported strongly by electronic theories of reaction. This mechanism may be given as follows.

$$CH_{3}CHO + OH^{-} \underset{k_{-1}}{\overset{k_{1}}{\leftarrow}} ^{-}CH_{2}CHO + H_{2}O \qquad (1)$$

$$CH_{3}CHO + {}^{-}CH_{2}CHO \xrightarrow{k_{2}} CH_{3} \xrightarrow{-}CH_{2} \xrightarrow{-}CHO$$
(2)

$$CH_{3} - CH_{2} - CH_{2} - CH_{0} + H_{2}O \rightleftharpoons CH_{3}CHOHCH_{2}CHO + OH^{-}$$
(3)

The k's represent the reaction rate constants for the forward and reverse reactions. The reaction is catalyzed by hydroxide ions and does not proceed in acidic solutions. The equilibrium point is too far in the aldol direction to be determined (10). On theoretical grounds, Reaction 3 is believed to be fast, and its rate has not been considered.

Among the important early experimental studies that was done by Bell (1). Using a dilatometric technique, he studied the acetaldehyde aldol condensation in water solution with sodium hydroxide as the catalyst. Because further condensation also appears and because acetaldehyde exists partly as a hydrate in water solution, definite conclusions could not be made. Later, Bell (2) concluded that the data supported a Hann and Lapworth type of mechanism in which the first reaction is slow and rate-controlling. In this case, the rate is proportional to the concentrations of acetaldehyde and hydroxide ions.

Bonhoeffer and Walters (5) formed aldol from acetaldehyde in deuterium oxide solutions with potassium carbonate at 0° C. They found that no deuterium became attached to carbon in the aldol product. This evidence supports the mechanism advanced by Bell. The slow step in the reaction is the ionization of acetaldehyde to form a carbonion which reacts immediately with an acetaldehyde molecule in the condensation step. If the condensation reaction were not rapid compared to the ionization reaction, deuterium would become attached to carbon in the reverse of the ionization reaction:

$$CH_2$$
— $CHO + D_2O \rightarrow CH_2D$ — $CHO + OH^-$ (4)

Matsuyama (8) determined the rate of the acetaldehyde aldol condensation at 35° C. by measuring the heat produced during the course of the reaction. Although the results were not entirely definite, he concluded that the reaction was second order in acetaldehyde and first order in hydroxide.

A general rate equation based on the Hann and Lapworth mechanism may be developed as follows: Assuming the third step is rapid, the reversibility of Reaction 2 can be neglected, and the rate of formation of aldol as given from Reaction 2 is

$$\frac{d[\text{aldol}]}{dt} = k_2[\text{CH}_3\text{CHO}][^-\text{CH}_2\text{CHO}]$$
(5)

where t = time in minutes and the brackets indicate concentration in moles per liter. For the carbanion, $-CH_2CHO$

$$\frac{d[^{-}CH_{2}CHO]}{dt} = k_{1}[CH_{3}CHO][OH^{-}] - k_{-1}[^{-}CH_{2}CHO][H_{2}O] - k_{2}[CH_{2}CHO][CH_{3}CHO]$$
(6)

Applying the steady state method by assuming that

$$\frac{d[^{-}CH_{2}CHO]}{dt} = 0$$
(7)

and solving for $[-CH_2CHO]$,

$$[^{-}CH_{2}CHO] = \frac{k_{1}[CH_{3}CHO][OH^{-}]}{k_{-1}[H_{2}O] + k_{2}[CH_{3}CHO]}$$
(8)

Substituting in Equation 5,

$$\frac{d[\text{aldol}]}{dt} = \frac{k_1 k_2 [\text{CH}_3 \text{CHO}]^2 [\text{OH}^-]}{k_{-1} [\text{H}_2 \text{O}] + k_2 [\text{CH}_3 \text{CHO}]}$$
(9)

For cases in which strong bases other than hydroxide are present, the product $k_1[OH^-]$ would be replaced by $\sum k_1[B_1]$, where k_1 is the individual constant for formation of the carbanion by reaction of acetaldehyde with each base B_1 . In this treatment, it is assumed that bases other than hydroxide need not be included.

Acetaldehyde exists partly as a hydrate in water solutions. The formation of acetaldehyde from its hydrate is fairly rapid compared to the aldol condensation (3, 7). As it is likely that only free acetaldehyde is involved in the aldol condensation, it is necessary to alter the general rate equation when total (as opposed to free) acetaldehyde is used. Assuming that other forms of acetaldehyde may be neglected,

$$[eCH_{3}CHO] = [CH_{3}CHO] + [hydrate]$$
(10)

where $eCH_3CHO = total$ acetaldehyde, including hydrated and ionized forms. For equilibrium with the hydrates,

$$\frac{[\text{hydrate}]}{[\text{CH}_{3}\text{CHO}][\text{H}_{2}\text{O}]} = K \text{ of hydration}$$
(11)

The value of the constant of hydration has been reported

¹ Present address, Shell Chemical Co., Houston, Tex.

to be 0.0485 (moles per liter) $^{-1}$ at 0° C. and 0.0218 (moles per liter) $^{-1}$ at 25° C. (3). Then, at 0° C.

$$[CH_{3}CHO] = \frac{[eCH_{3}CHO]}{1 + 0.0485[H_{2}O]}$$
(12)

For concentrations of acetaldehyde up to 10M, the concentration of free acetaldehyde may be given by

$$[CH_{3}CHO] = K'[eCH_{3}CHO]$$
(13)

where K' varies by only 20% at 0° C. and less at 25° C. With this substitution, Equation 9 becomes

$$\frac{d[aldol]}{dt} = \frac{k_1 k_2 (K')^2 [eCH_3 CHO]^2 [OH^-]}{k_{-1} [H_2 O] + k_2 K' [eCH_3 CHO]}$$
(14)

$$\frac{d[\text{aldol}]}{dt} = \frac{k_{b}[eCH_{3}CHO]^{2}[OH^{-}]}{k_{b}[H_{2}O] + [eCH_{3}CHO]}$$
(15)

where $k_5 = k_1 K'$ and $k_6 = k_{-1}/k_2 K'$.

Having made the assumption that the rate of change of concentration of the carbanion is zero.

$$-\frac{d[eCH_{3}CHO]}{dt} = 2 \frac{d[aldol]}{dt}$$
(16)

Equation 15 may then be written as

1

$$-\frac{d[eCH_{3}CHO]}{dt} = \frac{2k_{5}[eCH_{3}CHO]^{2}[OH^{-}]}{k_{6}[H_{2}O] + [eCH_{3}CHO]}$$
(17)

Integration between t = 0 and t = t, $[eCH_3CHO] = [eCH_3CHO]^0$ and $[eCH_3CHO] = [eCH_3CHO]$ gives

$$l_{s}[H_{2}O]\left\{\frac{1}{[eCH_{3}CHO]} - \frac{1}{[eCH_{3}CHO]^{0}}\right\} + ln \frac{[eCH_{3}CHO]^{0}}{[eCH_{3}CHO]} = 2k_{s} \int_{0}^{t} [OH^{-}] dt$$
(18)

If Reaction 1 is rate-limiting, k_{δ} becomes negligible and the first terms of Equation 18 may be dropped, giving a rate equation first order in acetaldehyde and first order in hydroxide ion concentrations as reported by Bell. If Reaction 2 is rate-limiting, the second term may be dropped, giving a rate equation that is second order in acetaldehyde and first order in hydroxide ion concentrations. If Reactions 1 and 2 are each partially rate-limiting, all terms in Equation 18 are required.

EQUIPMENT AND PROCEDURE

Experimental data were obtained using an ice bath at 0° C. and a constant temperature bath at 25° C. (Table I). The reactor vessel was a 1-liter, round-bottomed flask, equipped with four necks. A motor-driven stirrer, inserted through the middle neck of the flask, operated continuously throughout each run. A mercury seal was provided to prevent escape of vapors through this neck. Electrodes for a pH meter were inserted into two of the side necks, while a thermometer was inserted into the fourth neck. Samples were taken during the course of each run by introducing pipets into one of the side necks.

For each run, the acetaldehyde (Eastman Organic Chemicals, c.P. grade) and water mixture was placed in the reactor and allowed to reach the proper temperature. Samples were taken to determine the initial amount of acetaldehyde present. Then a known amount of base (potassium hydroxide) was introduced, causing the reaction to begin. At various time intervals, samples were taken for analysis. Readings of pH were taken repeatedly throughout each run.

Samples were collected in 300-ml. Erlenmeyer flasks containing sufficient standard sulfuric acid solution to neutralize the base present and effectively quench the reaction. Analysis for aldehyde content of each sample was

360

made by the sodium sulfite method of Siggia and Maxcy (9). This method is based on the following reaction:

$$O \qquad OH \qquad (19)$$

$$R-C-H + Na_2SO_3 + H_2O \rightarrow NaOH + R-C - SO_3Na$$

$$H$$

A known excess of standard sulfuric acid solution was placed in each sample flask together with an excess of sodium sulfite. The sample was then introduced and allowed to react for several hours at room temperature. Titration for excess acid allowed the amount of sodium hydroxide produced in the above reaction to be calculated, thus giving the amount of aldehyde present. The end point was taken to correspond to the color change with thymolphthalein indicator as established by potentiometric titration. From knowledge of the initial concentration of acetaldehyde and the concentration of aldehyde in each sample, the concentration of acetaldehyde could be calculated. It was assumed that no crotonaldehyde was formed from aldol during the course of the reaction in alkali medium or during the analytical tests when the medium was acidic. This assumption was found to be acceptable by tests with commercial grade aldol.

```
The pH meter used was a Beckman Model G equipped
```

Table I. Experimental Data

(Time in minutes. $A^* = [eCH_3CHO]$, concentration of free acetaldehyde plus hydrate in moles per liter.)

pH Consta	Constant at 12.84 Run 2, 0° C.				
Time	A*	Time	A*	Time	pН
0	0.0830	0	0.2030	1	12.94
2.5	0.0829	3	0.2014	$\overline{5}$	13.00
9	0.0833	11	0.1879	7	13.00
20	0.0822	20	0.1822	12	13.00
35	0.0801	36	0.1726	25	12.98
43	0.0789	48	0.1646	39	12.94
61	0.0775	103	0.1490	41	12.94
81	0.0759	108	0.1469	47	12.94
116	0.0707	111	0.1449	106	12.88
161	0.0678	160	0.1345	125	12.88
208	0.0650	219	0.1262	128	12.89
266	0.0608	223	0.1248	162	12.88
268	0.0606	224	0.1242	191	12.88
270	0.0615	312	0.1118	246	12.87
325	0.0598	313	0.1106	322	12.82
378	0.0551	314	0.1112	356	12.82
435	0.0531	407	0.0975	423	12.82
436	0.0530	408	0.0986	425	12.81
437	0.0530	409	0.0967	436	12.82
490	0.0506	518	0.0706	456	12.83
542	0.0479	519	0.0689	489	12.83
090 500	0.0403	520	0.0705	522	12.81
090	0.0467				
597 TD:	0.0456	m :	_ 11	T :	_ 11
1 ime	A	Dum 2	рп	Iime	рп
		пшіз	, o [.] C.		
0	0.637	1	13+	119	12.23
6	0.592	2	13.15	173	12.13
13	0.574	3	13.05	180	12.18
27	0.548	4	13.00	185	12.18
37	0.517	6	12.94	199	12.17
48	0.500	8	12.88	202	12.18
110	0.448	10	12.62	207	12.17
167	0.401	14	12.70	215	12.10
190	0.323	16	12.72	260	12.11
209	0.346	18	12.10	264	12 16
232	0.368	$\tilde{2}\tilde{0}$	12.67	268	12.15
258	0.346	$\overline{22}$	12.63	275	12.14
285	0.341	34	12.28	283	12.14
317	0.333	36	12.25	313	12.14
347	0.319	38	12.24	318	12.14
409	0.310	50	12.28	351	12.13
456	0.292	52	12.28	371	12.14
		115	12.24	377	12.14
		117	12.22	407	12.14

				Table	I. Continued					
A*	Time Run	рН 4,0°С.	Time	pН	Time	A*	Time Run 8	рН 3, 0° С.	Time	pН
$\begin{array}{c} 0.838\\ 0.831\\ 0.821\\ 0.793\\ 0.783\\ 0.785\\ 0.766\\ 0.763\\ 0.746\\ 0.737\\ 0.729\\ 0.741\\ 0.729\\ 0.727\\ 0.713\\ 0.716\end{array}$	2 5 11 16 23 37 65 71 135 142 221 238 266 299 336 358 Run	11.47 11.48 11.50 11.47 11.47 11.48 11.44 11.42 11.39 11.40 11.34 11.32 11.31 11.30 11.27 11.29 5, 0° C.			$\begin{array}{c} 0\\ 1.5\\ 5\\ 10\\ 12.5\\ 20\\ 22.5\\ 26.5\\ 30.5\\ 34\\ 37\\ 40\\ 45\\ 48\\ 51\\ 55\\ 59\\ 63\end{array}$	$\begin{array}{c} 10.37\\ 9.32\\ 9.57\\ 9.11\\ 9.06\\ 8.96\\ 8.61\\ 8.49\\ 8.16\\ 8.13\\ 8.00\\ 7.86\\ 7.79\\ 7.67\\ 7.47\\ 7.29\\ 7.29\\ 7.26\end{array}$	3 6 11 13 25 29 32 36 40 44 50 44 50 60 64	$\begin{array}{c} 11.86\\ 11.80\\ 11.73\\ 11.71\\ 11.67\\ 11.67\\ 11.64\\ 11.60\\ 11.60\\ 11.60\\ 11.60\\ 11.58\\ 11.57\\ 11.56\\ 11.55\\ 11.55\\ 11.55\\ \end{array}$		
$0.913 \\ 0.896$	$\frac{1}{2}$	$12.52 \\ 12.52$	99 103	$12.10 \\ 12.10$		1.20	Run 11	, 25° C.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111 118 121 126 143 163 168 173 178 188 211 214	12.10 12.09 12.10 12.09 12.08 12.07 12.06 12.05 12.04 12.04 12.03 12.02	$\begin{array}{c} 0 \\ 4 \\ 10 \\ 36 \\ 54 \\ 55 \\ 132 \\ 133 \\ 195 \\ 196 \\ 289 \\ 290 \end{array}$	$\begin{array}{c} 0.1048\\ 0.1032\\ 0.0962\\ 0.0755\\ 0.0669\\ 0.0654\\ 0.0380\\ 0.0379\\ 0.0225\\ 0.0214\\ 0.0074\\ 0.0063\\ \end{array}$	1 5 7 12 21 38 43 53 53 53 131 153 177	$11.33 \\ 11.35 \\ 11.35 \\ 11.38 \\ 11.38 \\ 11.38 \\ 11.40 \\ 11.40 \\ 11.40 \\ 11.43 \\ 11.50 \\ 11.56 \\ 11.58 $	240 275 290	11.59 11.62 11.60	
0.526	43 51	12.21 12.19	222 232	$12.02 \\ 12.01 \\ 12.01$			Run 12	2, 25° C.		
	54 62 69 71 Run	12.18 12.17 12.15 12.15 6, 0° C.	248 254 261 271	12.01 12.00 11.99 12.00	0 2 5 11 16	0.346 0.315 0.275 0.211 0.182	1 3 6 10 12	$11.93 \\ 11.98 \\ 11.80 \\ 11.78 \\ 11.76 \\ 11.76$	34 38 42 47 49	$11.78 \\ 11.7$
$\begin{array}{ccccc} 0 & 2.975 \\ 2 & 2.959 \\ 16 & 2.857 \\ 33 & 2.725 \\ 43 & 2.651 \\ 55 & 2.565 \\ 82 & 2.449 \\ 108 & 2.385 \end{array}$	$\begin{array}{ccccccc} 1 & 11.82 \\ 3 & 11.77 \\ 5 & 11.74 \\ 7 & 11.72 \\ 14 & 11.66 \\ 17 & 11.62 \\ 20 & 11.61 \\ 32 & 11.58 \end{array}$	32 350 77 377 74 434 72 457 36 62 61 58	$\begin{array}{cccc} 350 & 11.28 \\ 377 & 11.29 \\ 434 & 11.28 \\ 457 & 11.28 \end{array}$	24 31 37 48 54 63 72 78	$\begin{array}{c} 0.144\\ 0.128\\ 0.110\\ 0.097\\ 0.081\\ 0.600\\ 0.044\\ 0.030\\ \end{array}$	14 16 19 22 25 26 29 32	$11.76 \\ 11.75 \\ 11.74 \\ 11.74 \\ 11.75 \\ 11.76 \\ 11.76 \\ 11.77 \\ 11.78$	53 61 69 76 86	11.78 11.78 11.79 11.79 11.79	
$2.315 \\ 2.279$	40 45	$11.54 \\ 11.51$			0	0 500	Run 1	3, 25° C.	010	10.41
2.215 2.141 2.093 2.085 2.041 2.013 1.935 1.891 1.891 1.891 1.811 1.811	54 59 93 109 122 147 169 184 226 246 252 262 262 Run	11.50 11.49 11.42 11.40 11.39 11.35 11.33 11.32 11.30 11.30 11.29 11.29 7, 0° C.			3.5 11 18 27 35 43 53 61 105 106 117 127 128	$\begin{array}{c} 0.796\\ 0.796\\ 0.699\\ 0.674\\ 0.632\\ 0.597\\ 0.568\\ 0.554\\ 0.530\\ 0.465\\ 0.454\\ 0.432\\ 0.432\\ \end{array}$	1.5 4 9 14 19 21 28 33 40 44 51 51 51 62 107	$\begin{array}{c} 10.88\\ 10.82\\ 10.76\\ 10.69\\ 10.68\\ 10.67\\ 10.65\\ 10.62\\ 10.59\\ 10.58\\ 10.53\\ 10.53\\ 10.53\\ 10.53\\ 10.48 \end{array}$	210 238	10.41 10.38
3.12 3.03 2.87 2.70 2.46	3 5 8 9	12.15 12.13 12.09 12.07	238 252 264 274	$11.75 \\ 11.74 \\ 11.73 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.7$	200 201 240 241	0.352 0.352 0.332 0.331	110 118 129 202	$10.48 \\ 10.47 \\ 10.47 \\ 10.42$		
47 2.29 48 2.22		2.29 16 12.00 2.22 23 11.96	301 320	11.72 11.73	0	1.028	Run 14	ь, 25° С. 10.92	46	10.56
2.09 2.03 1.94 1.76 1.82 1.65 1.63 1.61 1.57 1.53 1.55 1.47 1.49	228 333 40 48 566 777 84 89 92 97 167 167	$\begin{array}{c} 11.92\\ 11.91\\ 11.91\\ 11.90\\ 11.88\\ 11.86\\ 11.83\\ 11.81\\ 11.80\\ 11.80\\ 11.80\\ 11.77\\ 11.77\end{array}$	360 381 412	11.71 11.72 11.72	4 10.5 16.25 22 26 30.5 35 38.5 43.5 50 57.5 66 69	$\begin{array}{c} 0.988\\ 0.933\\ 0.885\\ 0.836\\ 0.803\\ 0.793\\ 0.787\\ 0.777\\ 0.776\\ 0.756\\ 0.739\\ 0.706\\ 0.692 \end{array}$	2 4.5 8.5 12 14 17 20 23 27 32 36 36 39 42	$\begin{array}{c} 10.90\\ 10.86\\ 10.77\\ 10.72\\ 10.70\\ 10.68\\ 10.66\\ 10.62\\ 10.62\\ 10.62\\ 10.62\\ 10.61\\ 10.60\\ \end{array}$	49 51 54 59 64 68	10.58 10.57 10.56 10.55 10.56 10.54
	A^* 0.838 0.831 0.783 0.785 0.766 0.763 0.746 0.737 0.729 0.741 0.729 0.741 0.729 0.741 0.729 0.727 0.713 0.716 0.913 0.896 0.862 0.807 0.766 0.729 0.703 0.625 0.625 0.614 0.591 0.575 0.553 0.526 2.975 2.959 2.857 2.725 2.651 2.565 2.449 2.385 2.915 2.941 2.085 2.041 2.013 1.891 1.891 1.811 1.821 1.653 1.653 1.651 1.575 1.555 1.551 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A^* Time pH Run 4, 0° C. 0.838 2 11.47 0.831 5 11.48 0.793 16 11.47 0.783 23 11.47 0.783 23 11.47 0.785 37 11.48 0.766 65 11.39 0.737 142 11.40 0.729 221 11.34 0.741 238 11.32 0.729 266 13.1 0.729 266 13.1 0.729 266 1.27 0.716 358 11.29 Run 5, 0° C. 0.913 1 12.52 0.862 3 12.50 0.862 3 0.703 8 12.42 0.703 8 12.42 0.703 8 12.42 0.658 10 12.41 0.625 20 12.30 12.25 0.553 40 12.21 <	A^* Time Run 4, 0° C. Time Run 4, 0° C. 0.838 2 11.47 0.831 5 11.48 0.821 11 11.50 0.793 16 11.47 0.783 23 11.47 0.785 37 11.48 0.766 65 11.44 0.767 121.14 0.746 0.713 122.11.34 0.729 0.729 2266 11.31 0.727 299 11.30 0.727 299 11.30 0.727 299 11.30 0.727 299 11.30 0.727 299 11.30 0.713 336 11.27 0.716 358 11.29 0.729 7 12.42 126 0.766 6 12.44 113 0.625 20 12.30 168 0.625 20 12.30 168 0.553 40	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		The bit Continued 0.838 1 1 1.46 1.5 9.32 6 1.18 1.16 0.768 6.7 1 4.8 2.6 8.66 2.2 1.1.67 0.768 6.7 1.1.44 2.6.5 8.61 2.2 1.1.67 0.778 6.7 1.1.44 2.6.5 8.61 2.2 1.1.67 0.779 1.42 1.1.42 3.4 8.13 3.6 1.1.67 0.779 2.99 1.3.0 4.8 7.67 6.4 1.1.69 0.727 2.99 1.3.0 2.1.0 6.7 7.47 6.9 1.1.65 0.713 3.86 1.1.2 9.6 1.2.0 4.0 0.11.25 9.0 1.1.1

with a Type E glass electrode and a calomel reference electrode. Standardization of the electrodes was checked periodically during each run. Because potassium hydroxide was used as the basic catalyst, no sodium ion corrections were necessary. The total base content of the reaction mixture was determined by titration of samples in the standard manner.

DISCUSSION OF RESULTS

Table II contains summarizing data for runs at 0° and 25° C., indicating the ranges of total acetaldehyde concen-

as hydroxide ions. This indicates that some of the base added as catalyst reacted to form anions of acetaldehyde and aldol. The calculated amounts of these anions were small in relation to the total acetaldehyde present.

Further condensation of acetaldehyde and aldol can occur. Although the rate of condensation of aldol is slow, greater emphasis was placed on the data from the early stages of each run.

The $[OH^-]$ was determined from pH readings using values for the ion product of water of $10^{-14.95}$ and $10^{-13.97}$ at 0° and 25° C., respectively. Plots of $[OH^-]$ vs. time were drawn for

Run Temp., No. °C.	Temp	o., Time Range, Min.	[eCH₃CHO] Range, Moles/L.	pH Range	Rate Constants, $(L./Mole)^2 (Min.)^{-1}$	
	° C.				$\frac{1}{2k_5/k_6(\mathrm{H}_2\mathrm{O})}$	$2k_5$
						$k_6 = 0.184$
1	0	0597	0.0830-0.0456	12.84	2.21	22.1
2	0	0-520	0.2030-0.0705	12.94-12.81	1.77	17.7
3	0	0-456	0.637 -0.292	13.15-12.14	2.06	20.6
4	0	0-345	0.838 -0.716	11.47 - 11.29	1.72	18.2
5	0	0-286	0.913 -0.526	12.52 - 12.00	1.89	19.1
6	0	0-454	2.975 - 1.811	11.82-11.28		22.1
7	0	0-380	3.120 - 1.490	12.15 - 11.72		20.0
8	0	0-63	10.37 -7.26	11.86-11.55		21.0
						$k_6 = 0.0063$
11	25	0-290	0.1048 - 0.0063	11.33 - 11.60		16.7
12	25	0-78	0.346 -0.031	11.93-11.79		14.6
13	25	0-241	0.796 -0.331	10.88-10.38		15.8
14	25	0-69	028 -0.692	10.92 - 10.54		18.5

+

trations and pH values. Figure 1 shows typical curves of acetaldehyde concentration and pH changes with time during a run. In one run at 25° C. the pH increased; in all others, the pH decreased in value with time. The total base content of the reaction mixture (as determined by titration) remained essentially constant throughout each run, although a very slight decrease was observed. The observed values of pH were less than those obtained from calculations considering the total base content of the system to exist

Figure 1. For a typical run at 0° C., both acetaldehyde concentration and pH of the liquid solution decrease with time

each run and the integral, $\int_0^t [OH^-]dt$ was evaluated

graphically at various values of time, t.

For runs at 0° C. with acetaldehyde concentrations below 2M, the logarithmic term in Equation 18 could be neglected;

and plots of
$$\left\{ \frac{1}{[eCH_3CHO]} - \frac{1}{[eCH_3CHO]^6} \right\}$$
 vs. $\int_0^{t} (OH^-]dt$

gave straight lines. The slopes of these lines, equal to $2k_5/k_6$ [H₂O], are shown in Table II. The average deviation is 8.5%. Thus, under conditions of low acetaldehyde concentration and at 0° C., the reaction appears to be second order in acetaldehyde and first order in hydroxide ion concentrations—i.e., [eCH₃CHO] is negligible with respect to k_6 [H₂O] in Equation 15.

With higher acetaldehyde concentrations at 0° C., $[eCH_3CHO]$ becomes important with respect to $k_6[H_2O]$ and the logarithmic term in Equation 18 must be included.

An over-all plot of
$$k_6[H_2O]$$
 $\left\{ \frac{1}{[eCH_3CHO]} - \frac{1}{[eCH_3CHO]^\circ} \right\}$
- ln $\frac{[eCH_3CHO]^\circ}{[eCH_3CHO]}$ vs. $\int_0^{t} [OH^-] dt$ for 0° C. is shown in

Figure 2. The slope of the straight line is equal to $2k_5$. The correct value of k_6 was determined by trial and error with the aid of the ratio $2k_5/k_6[\text{H}_2\text{O}]$ determined previously. The average values of the constants determined are:

$$k_5 = 10 (liters) / (mole) (minute)$$

$$= 0.184$$
 (no units)

k,

The average deviation of k_5 , with k_6 equal to 0.184, is 6.7%. Thus, at 0° C., the theoretically derived Equation 15 agrees with the experimental data; the Hann and Lapworth mechanism with the first and second steps partially ratecontrolling at high acetaldehyde concentration and the second step rate-controlling at low acetaldehyde concentration appears to be valid.

At 25° C., in the acetaldehyde concentration range

Figure 2. On the basis of the Hann and Lapworth type of mechanism with Reactions 1 and 2 rate-controlling, this plot should give a straight line through the origin with a positive slope at 0° C. The mechanism applies over a wide range of acetaldehyde concentrations

studied, the experimental data agreed with Equation 15. Figure 3 is a plot of

$$k_{6}[H_{2}O] \left\{ \frac{1}{[eCH_{3}CHO]} - \frac{1}{[eCH_{3}CHO]^{0}} \right\} + \ln \frac{[eCH_{3}CHO]^{0}}{[eCH_{3}CHO]} vs. \int_{0}^{t} [OH^{-}]dt$$

The integral was determined by graphical integration, and the correct value of k_6 was determined by trial and error. The required straight line was obtained. The average values of the constants determined are

$$k_5 = 8.2$$
 (liters)/(mole)(minute)

$$k_6 = 0.0063$$
 (no units)

The average deviation of k_5 , with k_6 equal to 0.0063, is 7.3%. This agreement between the experimental data and the theoretical equations indicates that the Hann and Lapworth mechanism with the first and second steps each partially rate-controlling is valid at 25° C.

Figure 3. At 25° C., the mechanism supported by the experimental data at 0° C. (Figure 2) also applies

The kinetics of reaction reported here differ from those reported by Bell. He concluded that the reaction was first order in acetaldehyde and first order in hydroxide ion concentrations. Because further condensation of the aldol product occurs, it has been impossible to perform experiments in which the concentration of acetaldehyde varied widely during an individual run. For this reason, a wide range of initial acetaldehyde concentrations was used in this work. For an individual run, the data might be interpreted as indicating kinetics first order in acetaldehyde. This may

be seen in Figure 4 where $\ln \frac{[eCH_3CHO]^\circ}{[eCH_3CHO]}$ is plotted against $\int_{0}^{t} [OH^-] dt$ for runs at 0° C. A similar plot may be made for

 J_0 [or] performing the contract of the similar problem of the problem of the

Figure 4. Although the kinetic equation first order in acetaldehyde concentrations appears to apply when the kinetics are considered with respect to time, the first-order equation does not hold when large ranges of concentrations are considered. If the first-order equation were correct, all points on this plot would have fallen approximately on one straight line

The wide variation in slopes shows that such an interpretation is impossible. It is believed that if Bell had used a wide range of initial acetaldehyde concentrations, he could not have reported kinetics first order in acetaldehyde. Also, because of the variation in hydroxide ion concentration during individual runs (which Bell failed to recognize), the results reported here should supersede his work.

Figure 5 is a plot of the rate expression for second order in acetaldehyde, $\frac{1}{[eCH_3CHO]} - \frac{1}{[eCH_3CHO]^0}$ vs. $\int_0^t [OH^-]dt$. For kinetics second order in acetaldehyde, the plot would show a single line of constant slope. The variation in slopes is such that the slopes decrease with increasing acetaldehyde concentration.

The observation of Bonhoeffer and Walters (5), that no deuterium becomes attached to carbon in the aldol product, does not necessarily disagree with the conclusions set forth here. Their experiment was carried out with a high concentration of acetaldehyde. As the concentration of acetaldehyde is increased, the rate of the mechanism's condensation step increases with respect to the rate of the reverse of the ionization reaction. Thus, it is feasible that under conditions of high acetaldehyde concentration very few deuteriumcarbon bonds would be formed when the reaction is carried out in the deuterium oxide solution.

Figure 5. When the rate equation is considered as second order in acetaldehyde concentration, the slopes of the lines on this plot decrease with increasing acetaldehyde concentration instead of remaining constant as a true second-order case would require

ACKNOWLEDGMENT

The authors are grateful for financial support of this project by the National Science Foundation and the U. S. Industrial Chemicals Corporation.

LITERATURE CITED

- (1) Bell, R.P., J. Chem. Soc. 1937, p. 1637.
- (2) Bell, R.P., Trans. Faraday Soc. 37, 707 (1941).
- (3) Bell, R.P., Clurrie, J.C., Ibid., 48, 439 (1952).
- (4) Benton, C.H., Ph.D. thesis in chemistry, University of Illinois, Urbana, Ill., 1951.
- (5) Bonhoeffer, K.F., Walters, W.D., Z. physik. Chem. A-181, 441 (1938).
- (6) Hann, A., Lapworth, A., J. Chem. Soc. 85, 46 (1904).
- (7) Herbert, J.B.M., Lauder, I., Trans. Faraday Soc. 34, 432 (1938).
- (8) Matsuyama, H., Proc. Japan. Acad. 27, 552 (1951).
- (9) Siggia, S., Maxcy, W., Anal. Chem. 19, 1023 (1947).
- (10) Usherwood, E.H., J. Chem. Soc. 123, 1717 (1923).

RECEIVED for review November 2, 1959. Accepted March 18, 1960.

CORRECTION

In "Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of Ethane-*n*-Pentane System" [H.H. Reamer, B.H. Sage, and W.N. Lacey, J. CHEM. ENG. DATA 5, 44 (1960)] these figures should have appeared instead of the ones on page 49.

Figure 3. Equilibrium ratios for ethane and *n*-pentane

Figure 4. Pressure-temperature diagram for the ethane-n-pentane system